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Presentation outline

• Motivation

• Centrifuge testing program

• Instrument response and ground behavior

• Analytical models

• Novel lateral pressure mitigation method
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National Geophysical Data Center, NOAA 

The motivation

• Showa bridge, 1964 Niigata 
earthquake, Japan

Iwasaki (1984)
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Berrill et al. (2001)

The motivation

• Showa bridge, 1964 Niigata 
earthquake, Japan

• Landing Road bridge, 1987 
Edgecumbe earthquake, NZ
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The motivation

• Showa bridge, 1964 Niigata 
earthquake, Japan

• Landing Road bridge, 1987 
Edgecumbe earthquake, NZ

• Nishinomiya-ko bridge, 1995 
Kobe earthquake, Japan

© EQE International
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The motivation

April 22, 2022© Scott M. Olson 2022

• Showa bridge, 1964 Niigata 
earthquake, Japan

• Landing Road bridge, 1987 
Edgecumbe earthquake, NZ

• Nishinomiya-ko bridge, 1995 
Kobe earthquake, Japan

• Llacolen and Puento Viejo bridges, 
2010 Maule earthquake, Chile

The motivation

• Bill Emerson Memorial bridge 
(I-55) over the Mississippi River, 
Cape Girardeau, MO
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The motivation

• Bill Emerson Memorial bridge 
(I-55) over the Mississippi River, 
Cape Girardeau, MO

• Port Mann bridge over the 
Fraser River, Vancouver, BC
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The motivation

• Bill Emerson Memorial bridge 
(I-55) over the Mississippi River, 
Cape Girardeau, MO

• Port Mann bridge over the 
Fraser River, Vancouver, BC

• Stan Musial Veterans Memorial 
bridge (I-70) over the 
Mississippi River, St. Louis, MO

idot.Illinois.gov
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The motivation

• Increasing infrastructure demand and 
higher seismic loads (in many areas) 
require larger foundations 

• Engineers lack adequate design tools 
when dealing with lateral spreading 
forces against large foundation 
systems

• Most solutions involve potentially 
conservative designs

Muszynski et al. (2013)
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Objectives of this study

• Measure lateral spreading-
induced pressures against a 
rigid foundation element

• Develop practical design 
guidelines for predicting 
these pressures against large 
foundation used in design

• Explore novel approaches to 
mitigate effects of the 
increase in lateral pressure
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Liquefaction and lateral spreading

• Fundamentally, liquefaction 
can be induced by monotonic 
or cyclic loading

• Lateral spreading is a 
consequence of cyclic mobility 
of liquefiable soil located 
below gently sloping ground 
or near a surface incision

modified from Kramer (1996)
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Liquefaction and lateral spreading

• Lateral spreading is a consequence of cyclic mobility of liquefiable soil located 
below gently sloping ground or near a surface incision

• Lateral spreading is possible when initial shear stress is smaller than the 
liquefied shear strength

modified from Kramer (1996)
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Approaches to estimate lateral pressures on foundations

• Lateral loads on flexible foundations 
involves a complex, kinematic soil 
structure interaction phenomenon 
driven by the permanent lateral 
displacement of the ground in the 
free-field (Dobry et al. 2003) 

• Approach 1: Use p-y curves for soil 
considering the relative movement of 
the foundation and laterally spreading 
soil (soil-structure interaction method)

Boulanger et al. (2003)
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Approaches to estimate lateral pressures on foundations

• Lateral loads on flexible foundations 
involves a complex, kinematic soil 
structure interaction phenomenon 
driven by the permanent lateral 
displacement of the ground in the 
free-field (Dobry et al. 2003) 

• Approach 2: Assign a peak pressure 
against the foundation based on the 
shear strength of the soil (limit 
equilibrium method)

Boulanger et al. (2003)
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Presentation outline

• Motivation

• Centrifuge testing program

• Instrument response and ground behavior

• Analytical models

• Novel lateral pressure mitigation method

March 9, 2023© Scott M. Olson 2023

Research program

• Physical modeling and analytical method development (Muszynski 2013)

• Numerical simulations (Phillips 2013 – not detailed here)

March 9, 2023© Scott M. Olson 2023
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Equipment and instruments

• Centrifuge facility

• Accelerometers

• Pressure transducers

• Linear voltage differential 
transformers

• Laminar container

• High-speed camera

• Laser displacement sensors

• Tactile pressure sensors

March 9, 2023© Scott M. Olson 2023

Equipment and instruments

• Tactile pressure 
sensors laminated 
prior to use for 
protection and 
waterproofing

• Outfitted with 
Teflon to decrease 
shear stresses and 
increase protection

March 9, 2023© Scott M. Olson 2023
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Equipment and instruments

• Tactile pressure sensors 
wrapped around rigid 
caisson bolted to base 
of laminar container

March 9, 2023© Scott M. Olson 2023

Equipment and instruments

• Tactile pressure sensors 
wrapped around rigid 
caisson bolted to base 
of laminar container

• Typical tactile pressure 
sensor output

March 9, 2023© Scott M. Olson 2023
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Nevada sand physical properties

• Uniform, subangular 
quartz sand

• D50 = 0.16mm

• D10 = 0.075mm

• Cu = 2.2

• CC = 0.75

• emax = 0.828

• emin = 0.521

• Gs = 2.68 
Muszynski et al. (2014)
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Nevada sand physical properties

• φ'peak ≃ 36° (DR = 30 to 40%)

• φ'cs ≃ 33°

• φ'repose ≃ 34°

• At effective normal stresses 
less than 100 kPa, sand was 
slightly dilative
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Hydrostatic verification testing

PPT

Accelerometer

Pressure sensor

Top

Side

1
2
3

(a)

(b)

ABCD

End

Top

Side End

1
2
3

Relatively rigid walls

Relatively
flexible wall

• Used tactile pressure 
cells along rigid and 
flexible walls to 
measure hydrostatic 
pressures

• Pressure transducers 
also used as a ‘control’ 
measurement of 
hydrostatic pressures 

Muszynski et al. (2016)
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Hydrostatic verification testing

• Used tactile pressure 
cells along rigid and 
flexible walls to 
measure hydrostatic 
pressures

• Pressure transducers 
also used as a ‘control’ 
measurement of 
hydrostatic pressures 
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Hydrodynamic testing

• Used tactile pressure cells along 
rigid and flexible walls to measure 
hydrodynamic pressures during 
shaking event

• Pressure transducers also used as a 
‘control’ measurement of 
hydrodynamic pressures 

• Maxima and minima pressures 
measured by tactile pressure cells 
were smaller than PPT
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Hydrodynamic testing – Depth-dependent correction

April 22, 2022

• Using tactile pressure sensor 
and PPT measurements, we 
developed depth-dependent 
correction functions for 
dynamic pressures 

• Correction factors generally 
were consistent with those 
reported by Dashti et al. 
(2012), but were both 
frequency- and depth-
dependent
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Hydrodynamic testing – Applying correction

• Using tactile pressure 
sensor and PPT 
measurements, we 
developed depth-
dependent correction 
functions for dynamic 
pressures 

• Correction validated 
against a 2nd

hydrodynamic test
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Geostatic verification testing

• Used tactile pressure 
cells along rigid and 
flexible walls to 
measure geostatic 
pressures in saturated 
sand
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Geostatic verification testing

April 22, 2022

• Geostatic pressures 
generally agreed with 
theory

• Wall stiffness 
significantly affected 
pressure measurements 10
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Geodynamic testing

• Geodynamic 
pressures pressures 
generally consistent 
and in phase with 
applied base 
acceleration

• Dynamic correction 
important for 
estimating realistic 
dynamic pressures
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Presentation outline

• Motivation

• Centrifuge testing program

• Instrument response and ground behavior

• Analytical models

• Novel lateral pressure mitigation method
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Ready for production testing

• Free-field models

• Caisson models

• Ground deflection 
wall models

March 9, 2023© Scott M. Olson 2023
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Ready for production testing

• Free-field models

• Caisson models

• Ground deflection 
wall models

• Prototype dimensions: 
35.5m (length) x 
17.8m (width) x     
12m (depth)

Muszynski et al. (2014)

March 9, 2023© Scott M. Olson 2023

Free-field tests

• Free-field tests for 
numerical 
(constitutive) model 
calibration

• Evaluate ground 
response and lateral 
spreading without 
presence of caisson

Nevada sand
Dr=40%-45% 

Lightly cemented 
dense sand
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Input motion
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Nevada sand
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Dr=40%-45% 

Lightly cemented 
dense sand

2 Deg.
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Unprotected caisson tests

• Unprotected caisson 
tests with all sand or 
sand with clay cap

• Obtained lateral 
spreading-induced 
pressures on caisson
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Nevada sand
at 40% Dr 

Caisson
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Lightly cemented 
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Unprotected caisson tests

• Unprotected caisson 
tests with all sand or 
sand with clay cap

• Obtained lateral 
spreading-induced 
pressures on caisson

• Clay cap imposed 
excessive shear 
stress on pressure 
sensors invalidating 
the measurements

Test I-A5

Test I-B
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Protected caisson tests

• Addition of ground 
deflection wall 
upslope of caisson in 
an all-sand profile or 
sand with clay cap

• Obtained lateral 
spreading-induced 
pressures on 
protected caisson

• Clay cap shearing 
affected results

Test II-B
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Test II-B3
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• Free-field instrument 
array showed clear 
evidence of 
liquefaction and 
lateral spreading

Free-field instrument records
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March 9, 2023April 22, 2022

• Near-field instrument 
array showed clear 
evidence of 
liquefaction but no 
dilation spikes

Near-field instrument records

© Scott M. Olson 2023

Lateral displacement & shear strain
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• Maximum shear strain typically occurred 
around 4 to 6 m below surface

• Free-field surface displacement ranged 
from 1.5 to 4.0 m
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April 22, 2022

Lateral displacement & tracking data

• Example ground deformation at surface 
and subsurface levels

• Greatest displacement near surface, 
decreasing with depth

• Indication of the passive wedge shape 
and size inferred from displacements of 
colored sand layers

Olson et al. (2017)

© Scott M. Olson 2023

April 22, 2022

Development of passive wedge

• Example ground 
deformation at surface

• Used high-speed 
camera to track surface 
markers (zip-tie heads)

© Scott M. Olson 2023
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Passive wedge depth

• Determining the 
depth of the 
passive wedge, h

• 6 to 7m for these 
tests

• Failure surface 
(passive wedge) is 
curved
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Geostatic lateral pressures

• Geostatic pressure 
distribution for 
Tests I-A2 and I-A3

a-b) before shaking

c-d) after shaking
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Geodynamic lateral pressures

• Geodynamic 
pressure 
distribution for 
Tests I-A2 and I-A3

• Pressures 
correspond to time 
after onset of 
liquefaction at 
which maximum 
moment acts on 
caisson
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Presentation outline

• Motivation

• Centrifuge testing program

• Instrument response and ground behavior

• Analytical models

• Novel lateral pressure mitigation method
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Formulation of analytical approaches

• Strain wedge model (SWM; Ashour et al. 1998, Ashour and Norris 2003) 
―φm

― Passive wedge depth, h
― Porewater pressure ratio, ru , distribution
―Used with effective stresses

• Modified Broms’ method (Olson et al. 2017)
―Developed using undrained shear strength parameters
― “Passive wedge factor” (PWF)

March 9, 2023© Scott M. Olson 2023

Passive wedge geometry for SWM

• SWM requires 
geometry of passive 
wedge to estimate 
lateral pressures

• Estimated based       
on φm

Strain wedge model Idealized wedge from centrifuge

Olson et al. (2017)

March 9, 2023© Scott M. Olson 2023
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Porewater pressure distribution for SWM

• SWM requires 
effective stresses to 
estimate lateral 
pressures

• Excess porewater 
pressure, ru , 
distributions from 
centrifuge test 
measurements and 
numerical simulations

Olson et al. (2017)
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Development of modified Broms’ method

• Broms’ (1964a,b; 1965) method estimates limiting (ultimate) lateral pressures 

𝑃௨௟௧ ൌ 3𝜎′௩𝐾௣𝐵 𝑃௨௟௧ ൌ 9𝑠௨𝐵(sands) (clays)

March 9, 2023© Scott M. Olson 2023
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Development of modified Broms’ method

• Broms’ (1964a,b; 1965) method estimates limiting (ultimate) lateral pressures 

April 22, 2022

Olson et al. (2017)

𝑃௨௟௧ ൌ 3𝜎′௩𝐾௣𝐵 𝑃௨௟௧ ൌ 9𝑠௨𝐵(sands) (clays)

© Scott M. Olson 2023

Development of modified Broms’ method

• Broms’ (1965) method estimates limiting (ultimate) lateral pressures 

• Modified Broms’ method for undrained conditions in sand developed to 
remain simple but faithful to measured data in centrifuge tests
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PWF from Broms’ data

• Broms’ (1965) used 
upper limit for 3D 
effects throughout 
pile depth

• Average PWF = 2

Olson et al. (2017)
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PWF from Broms’ data

• Upslope total 
pressures 
reasonably 
consistent with 
modified Broms’ 
method and SWM 
(using max ru) 

• Net pressures 
better represented 
by modified 
Broms’ method

Olson et al. (2017)
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Presentation outline

• Motivation

• Centrifuge testing program

• Instrument response and ground behavior

• Analytical models

• Novel lateral pressure mitigation method
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Mitigating lateral pressures

• Increase caisson 
size

Olson et al. (2021)
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Mitigating lateral pressures

• Increase caisson 
size

• Substantial 
ground 
improvement

Olson et al. (2021)
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Mitigating lateral pressures

• Increase caisson 
size

• Substantial 
ground 
improvement

• Novel ground 
deflection wall

Olson et al. (2021)
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Mitigating lateral pressures with ground deflection walls

• Three deflection 
walls considered

• Modeled after 
potential 
buttressed sheet 
pile wall 
installations

Olson et al. (2021)
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Performance of ground deflection walls

• Deflection walls re-
directed the laterally 
spreading ground 
around the caisson

• Surface 
displacements for 
models with 
deflection walls 
were nearly identical 
to free-field tests 

Olson et al. (2021)
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Performance of ground deflection walls

• Deflection walls re-
directed the laterally 
spreading ground 
around the caisson

• Surface 
displacements for 
models with 
deflection walls 
were nearly identical 
to free-field tests 

Olson et al. (2021)
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Performance of ground deflection walls

• Displacement vector plots 
used to quantify differences

• Passive wedge poorly 
developed upslope of 
protected caisson

• Displacements adjacent to 
caisson larger and more 
consistent in protected case

© Scott M. Olson 2023

Olson et al. (2021)
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Performance of ground deflection walls

• Pressures directly against 
deflection walls were 
unusable because of shear 
stresses

• However, upslope lateral 
pressures against 
unprotected walls 
significantly larger than 
against protected walls

April 22, 2022© Scott M. Olson 2023
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Performance of ground deflection walls

• Downslope lateral 
pressures were nearly the 
same regardless of the 
presents of a deflection 
wall
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Performance of ground deflection walls

• Net lateral pressures 
against unprotected walls 
significantly larger than 
against protected walls

April 22, 2022© Scott M. Olson 2023
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Summary and conclusions

• Lateral spreading can cause significant damage to pile foundations
• Existing methods to evaluate this problem have focused on individual piles 

and relatively small pile groups where soil-foundation interaction is key
• These existing methods generally do not apply to rigid foundations 
• Integrated centrifuge testing and numerical simulation program was 

conducted to develop analytical tools, numerical models, and novel 
mitigation methods to address this problem

• Modified Broms’ method in concert with yield or liquefied shear strengths 
can be used to reasonably predict 3D passive (limiting) pressures 

• Ground deflection walls, potentially constructed using buttressed sheet piles 
or specific foundation shapes/layouts, may significantly reduce lateral 
pressures acting on foundations during lateral spreading
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Thanks for your attention!

Questions?

olsons@illinois.edu
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