

<section-header><section-header><section-header><section-header><section-header><section-header><image><image><image><image><image><image>

(c) Scott M. Olson, PhD, PE

(c) Scott M. Olson, PhD, PE

Development of modified Broms' method • Broms' (1965) method estimates limiting (ultimate) lateral pressures $P_{ult} = 3\sigma'_v K_v B$ (sands) • Modified Broms' method for undrained conditions in sand developed to remain simple but faithful to measured data in centrifuge tests $P_{ult} = PWF[\gamma_{sat}h + 2s_u(liq)]B$ $\sigma_{h.passive} = PWF[\gamma_{sat}h + 2s_u(liq)]$ for $z \leq h$ for $h \leq z \leq h_{lia}$ $\sigma_{h,passive} = \gamma_{sat}h$ • PWF incorporated to account for 3D effects on lateral stresses Olson et al. (2017) American Society of Civil Engineers © Scott M. Olson 2023 March 9, 2023 ILLINOIS 55

Presentation outline			
• Motivation			
 Centrifuge testing program 			
• Instrument response and ground behavior			
• Analytical models			
Novel lateral pressure mitigation method			
© Scott M. Olson 2023	March 9, 2023	American Society of Civil Engineers OREGON SECTION Geotechnical Engineering Technical Group	
61			

Performance of ground deflection walls 0 No data Test I-A3 for Test I-A2 • Downslope lateral 2 Active undrained pressure pressures were nearly the Depth [m] 4 At rest same regardless of the 6 Rankine drained presents of a deflection active 8 Corrected wall pressure 10 envelopes 0 Test II-A Test II-A2 2 Depth [m] 4 6 8 10 זנ 0 50 100 150 200 50 100 150 © Scott M. Olson 2023

70

ILLINOIS

200

Downslope pressure [kPa]

Summary and conclusions

- Lateral spreading can cause significant damage to pile foundations
- Existing methods to evaluate this problem have focused on individual piles and relatively small pile groups where soil-foundation interaction is key
- These existing methods generally do not apply to rigid foundations
- Integrated centrifuge testing and numerical simulation program was conducted to develop analytical tools, numerical models, and novel mitigation methods to address this problem
- Modified Broms' method in concert with yield or liquefied shear strengths can be used to reasonably predict 3D passive (limiting) pressures
- Ground deflection walls, potentially constructed using buttressed sheet piles or specific foundation shapes/layouts, may significantly reduce lateral pressures acting on foundations during lateral spreading

© Scott M. Olson 2023 March 9, 2023

72

ILLINOIS

American Society of Civil Engineers

References		
Ashour, M., Norris, G., and Pilling, P. (1998). Lateral loading of a pile in layered soil using the strain wedge model. ASCE Ashour, M. and Norris, G. (2004). Lateral loaded pile response in liquefiable soil. ASCE J. of Geotech. Geoenviron. Eng., 12	J. of Geotech. Geoenv. Eng., 124(4), 303-315. 20(6), 404-414.	
Berrill, J.B., Christensen, S.A., Keenan, R.P., Okada, W. and Pettinga, J.R., (2001). Case study of lateral spreading forces of 501-517.	n a piled foundation. Geotechnique, 51(6),	
Boulanger, R.W., Kutter, B.L., Brandenberg, S.J., Singh, P., and Chang, D., (2003) "Pile foundations in liquefied and lateral centrifuge experiments and analyses. Report for California Department of Transportation under contract 59A0162., 2	lly spreading ground during earthquakes: 205 pp.	
Broms, B.B. (1964a). Lateral resistance of piles in cohesionless soils. J. Soil Mech. Found. Div., 90(3), 123-156. Broms, B.B. (1964b). Lateral resistance of niles in cohesive soils. J. Soil Mech. Found. Div., 90(2), 27-64.		
Broms, B.B. (1965). Design of laterally loaded piles. J. Soil Mech. Found. Div., 91(3), 79-99.		
Dobry, R., Abdoun, T., O'Rourke, T.D. and Goh, S.H. (2003). Single piles in lateral spreads: field bending moment evaluation. J. of Geotech. Geoenv. Eng., 129, 879-889. Iwasaki, T. (1984). A case history of bridge performance during earthquakes in Japan. Proc., Int'l Conf. Case Histories in Geotechnical Engineering, University of Missouri-Rolla, Vol. 3, 981-1008.		
Kramer, S.L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, Inc.		
Muszynski, M.R. (2013). Evaluating soil pressures on a rigid foundation element during liquefaction-induced lateral spreading. PhD Thesis, University of Illinois at Urbana-Champaign, Urbana, IL.		
Muszynski, M.R., Olson, S.M., Hashash, Y.M.A., and Phillips, C. (2013). Muszynski, M.R., Olson, S.M., Hashash, Y.M.A., and Phillips, C. (2014). Repeatability of centrifuge tests containing a large	ne rigid foundation subjected to lateral	
spreading. ASTM Geotech. Test. J., 37(6), 1-14.		
Muszynski, M.R., Olson, S.M., Hashash, Y.M.A., and Phillips, C. (2016). Earth pressure measurements using tactile pressure sensors in a saturated sand during static and dynamic centrifuge testing. ASTM Geotech. Test. J., 39(3), 371-390.		
Olson, S.M., Muszynski, M.R., Hashash, Y.M.A., and Phillips, C. (2017). Passive wedge formation and limiting lateral presspreading. ASCE J. of Geotech. and Geoenviron. Eng., 143(7), 13p.	ssures on large foundations during lateral	
Olson, S.M., Muszynski, M.R., Hashash, Y.M.A., and Phillips, C. (2021). Mitigating lateral spreading forces on large foun of Geotech. Geoenviron. Eng., 147(11), 16p.	dations using ground deflection walls. ASCE J.	
Phillips, C. (2013). Dynamic soil modeling in site response and soil-large pile interaction analysis. PhD Thesis, University	of Illinois at Urbana-Champaign, Urbana, IL.	
© Scott M. Olson 2023 March 9, 2023 March 9, 2023	American Society of Civil Engineers OREGON SECTION Geotechnical Engineering Technical Group	
70		

